
407

0022-4715/02/1100-0407/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 109, Nos. 3/4, November 2002 (© 2002)

Scaling Solutions of Inelastic Boltzmann Equations
with Over-Populated High Energy Tails

This article is dedicated to our dear friend Robert J. Dorfman in honor of his 65th birthday.

M. H. Ernst1 and R. Brito2

1 Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80.195, 3508 TD Utrecht,
The Netherlands.
2 Departamento de Física Aplicada I, Universidad Complutense, 28040 Madrid, Spain; e-mail:

brito@seneca.fis.ucm.es

Received December 21, 2001; accepted April 16, 2002

This paper deals with solutions of the nonlinear Boltzmann equation for spa-
tially uniform freely cooling inelastic Maxwell models for large times and for
large velocities, and the nonuniform convergence to these limits. We demon-
strate how the velocity distribution approaches in the scaling limit to a similarity
solution with a power law tail for general classes of initial conditions and derive
a transcendental equation from which the exponents in the tails can be cal-
culated. Moreover on the basis of the available analytic and numerical results
for inelastic hard spheres and inelastic Maxwell models we formulate a conjec-
ture on the approach of the velocity distribution function to a scaling form.
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1. INTRODUCTION

In recent times overpopulation of high energy tails in velocity distribu-
tions of freely cooling or in driven granular fluids has become a focus of
attention in laboratory experiments, kinetic theory and computer simula-
tions. (1) In kinetic theory, granular fluids out of equilibrium were originally
modeled by inelastic hard spheres (IHS), (2, 3) which is the proto-typical
model for dissipative short ranged hard core interactions. In general,
similarity solutions are of interest, because they play an important role as
asymptotic or limiting solutions of the Boltzmann equation at large times



or at large velocities, and they frequently show overpopulated high energy
tails when compared to the omni-present Gaussians.

Overpopulated tails were first found theoretically by studying scaling
or similarity solutions of the nonlinear Enskog–Boltzmann equation for the
IHS fluid, both in freely evolving IHS systems without energy input, (4) as
well as in driven or fluidized systems, (4–6) and confirmed afterwards by
Monte Carlo simulations of the Boltzmann equation, (7, 8) and by laboratory
experiments. (1) Overpopulated tails in free IHS fluids (9) and driven ones (10)

have also been studied by molecular dynamics simulations of inelastic hard
spheres. The observed overpopulations in IHS systems are mainly stretched
exponentials exp[−Acb] with b=1 (4, 7, 8, 11) in systems without energy input,
and b=3/2 (4, 8) in driven systems, but for some forms of driving (5, 8) b=2
has been observed. For hard sphere systems there is in general good
agreement between the analytic predictions and numerical or Monte Carlo
solutions of the nonlinear Boltzmann equation.

About two years ago Boltzmann equations for inelastic Maxwell
models have been introduced for the free case without energy input in
refs. 12 and 13, and for the driven case in refs. 14–16. In these studies
similarity solutions have received a great deal of attention, because general
classes of such solutions turned out to be non-positive, and hence unphysical.

The interest in overpopulated tails in elastic Maxwell models has
already a long history, and originated from the discovery of an exact posi-
tive similarity solution of the nonlinear Boltzmann equation for Maxwell
molecules, the so-call BKW mode, (17–20) named after Bobylev, Krook, and
Wu. The most recent interest in similarity solutions of the Boltzmann
equation for inelastic Maxwell models (IMM) was also stimulated by the
discovery of an exact similarity solution (21) for a freely cooling one-dimen-
sional IMM of the form f̃(c)=(2/p) 1/[1+c2]2. It is positive, has finite
mean energy Oc2P, and an algebraic high energy tail 1/c4. The same
authors also obtained (21, 22) Monte Carlo solutions f(v, t) of the nonlinear
Boltzmann equation for freely evolving IMM systems with general initial
distributions both in one and two dimensions, and observed that their
numerical results for f(v, t) at large time could be collapsed on a scaling
form f(v, t) ’ (vo(t))−d f̃(v/vo(t)). Here v2o(t) ’ Ov2P ’ exp[− ct], where
the decay rate c ’ (1−a2), represents the typical decay of the average
kinetic energy. Moreover, these scaling solutions showed heavily overpo-
pulated power law tails with a cross-over time, ytail(v), that increases with
the energy, and a is the coefficient of normal restitution.

Soon after that Krapivsky and Ben-Naim (23) and the present
authors, (24) using a self-consistent method, gave a theoretical explanation of
these power law tails for general dimensionality d together with explicit
predictions of the tail exponent a, defined through f̃(c) ’ 1/c2a+d. These
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results were recently extended (25, 26) to driven inelastic Maxwell models,
where the high energy tail is of exponential form exp[−A |c|]. Apparently,
the type of overpopulation depends sensitively on the microscopic model,
on the degree of inelasticity and on the possible mode of energy supply to
the dissipative system.

From the point of view of kinetic theory the intriguing question is,
what is the generic feature causing overpopulation of high energy tails in
systems with inelastic particles, rather than what is the specific shape of the
tail. How does the overpopulation depend on the underlying microscopic
model, and on the different forms of energy input? (5, 8, 14–16) As discussed
more extensively in ref. 25 the differences in shape are frequently related to
non-uniformities in the limits of long times, large velocities and vanishing
inelasticity, which lead to different results when taking the limits in differ-
ent order or when taking coupled limits such as the scaling limit (e.g., the
differences between bulk and tail behavior), or performing an expansion in
powers of the inelasticity, and then studying large times (typically Gaussian
tails are observed (14)) or studying large times at fixed inelasticity and taking
large time limits afterwards (typically overpopulated tails are observed (5, 6))
with a whole wealth of coupled limits in between.

What are inelastic Maxwell models? The IMM’s, introduced in refs. 12
and 13, share with elastic Maxwell molecules the property that the collision
rate in the Boltzmann equation is independent of the relative kinetic energy
of the colliding pair. However, these IMM’s do not describe real particles,
but only pseudo-particles with ‘‘collision rules’’ (v1, v2)Q (v

g
1 , v

g
2 ) between

pre- and post-collision velocities, defined to be the same as for smooth
inelastic hard spheres with a restitution coefficient a with (0 < a < 1).
There are no such objects as ‘‘inelastic Maxwell particles’’ that interact
according to a given force law and that can be studied by molecular
dynamics simulations.

These IMM’s are of interest for granular fluids in spatially homoge-
neous states, not because they can claim to be more realistic than IHS’s,
but because of the mathematical simplifications resulting from an energy-
independent collision rate. Nevertheless the IMM’s keep the qualitatively
correct structure and properties of the nonlinear macroscopic equations (27)

and obey Haff ’s law, (28) just like the even simpler inelastic BGK or single
relaxation time models (29) do. What harmonic oscillators are for quantum
mechanics, and dumb-bells for polymer physics, that is what elastic and
inelastic Maxwell models are for kinetic theory.

From the point of view of nonequilibrium (steady) states, the structure
of velocity distributions in dissipative systems, including the high energy
tail, is a subject of continuing research, as the universality of the Gibbs’
state of thermal equilibrium is lacking outside thermal equilibrium, and a
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possible classification of generic structures would be of great interest in
many fields of non-equilibrium statistical mechanics.

After this explanation of the possible relevance of inelastic Maxwell
models for different fields of research, we concentrate on the kinetic theory
for these models, in particular on the simplest case, the freely cooling one
without energy input. We return now to the recent results of refs. 21, 22,
and 30, and we consider their observations, described above, as strong
evidence for the existence of interesting limiting behavior when coupled
limits are taken, and more explicitly, we interpret their findings as follows:
the transformed or rescaled distribution function f̃(c, t) defined through,

f(v, t)=(vo(t))−d f̃(v/vo(t), t), (1.1)

approaches a scaling or similarity form in the coupled limit as tQ. and
vQ 0, with v/vo(t)=c kept constant, i.e.

lim
tQ.
f̃(c, t)=lim

tQ.
(vo(t))d f(vo(t) c, t)=f̃(c). (1.2)

The coupled limit considered in (1.2) is the same scaling limit as considered
in the solutions of the nonlinear Boltzmann equation for IHS in refs. 4
and 25, although it has not been pointed out so emphatically. On the other
hand the scaling limit, considered in refs. 13–16, is the coupled limit as
tQ. and aQ 1 with (1−a2) t=const, while v is kept constant.

The present paper leads to the formulation of a conjecture by combin-
ing the recent results on scaling solutions and overpopulated high energy
tails in inelastic hard sphere fluids and inelastic Maxwell models with an
older conjecture of Krook and Wu (19) on the role of a special self-similar
solution, the so-called BKW-mode, (17–20) named after Bobylev, Krook, and
Wu. This conjecture reads: Solutions f(v, t) of the nonlinear Boltzmann
equation for dissipative systems—i.e., the rescaled distribution f̃(c, t) in
(1.1) rescaled with the instantaneous r.m.s. velocity vo(t) ’ (Ov2P)1/2—
approach for general initial conditions, in the scaling limit (1.2), to the
scaling solution f̃(c) with an overpopulated high energy tail. In taking the
scaling limit the degree of inelasticity, (1−a2), must be kept constant, and
cannot be interchanged with the elastic limit (a ‘ 1).

This conjecture is a variation on the Krook–Wu conjecture for elastic
Maxwell molecules, formulated as: ‘‘An arbitrary initial state tends first to
relax to a state, characterized by the BKW-mode. The subsequent relaxa-
tion is essentially represented the BKW-mode with an appropriate phase.’’
As it turned out, this conjecture was not supported by numerical and ana-
lytic results obtained for the physically most relevant initial distributions
with a finite second moment in the limit as tQ+.. (20) However, Bobylev
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and Cercignani have recently shown that the conjecture holds in systems
of elastic Maxwell molecules in the limit tQ −. for the so-called eternal
solutions f(v, t), (31, 32) which are characterized by a divergent second
moment.

The paper is organized as follows. In Section 2 the mathematical
model Boltzmann equation for IMM’s is constructed starting from the
Enskog–Boltzmann equation for IHS’s, and some basic properties are
derived there, as well as in Appendix A. In Section 3 we show that the
IMM Boltzmann equation admits a similarity solution with a power law
tail ’ 1/c2a+d, where the non-integer tail exponent a is the solution of a
transcendental equation, which is solved numerically. The moments Oc2nP
of the scaling form f̃(c) with n < a are calculated in Section 4.2 from a
recursion relation. The moments with n > a are divergent. In Section 4.2 we
demonstrate that the moment mn(t) of the rescaled distribution f̃(c, t),
for the general class of initial conditions with all moments Ov2nP <.,
approach in the long time limit for n < a to the unique set of moments mn
of the scaling form, and we analyze how all moments mn(t)Q. for n > a.
Some generalizations of these results are described in Section 4.3. In
Section 5 we present our conclusions, and interpret our results as a dem-
onstration of our conjecture for IMM’s, i.e., as a weak form of approach of
an arbitrary rescaled distribution f̃(c, t) to a universal scaling form.

2. KINETIC EQUATIONS FOR DISSIPATIVE SYSTEMS

2.1. Inelastic Hard Spheres

For the construction of inelastic Maxwell models, it is convenient to
start from the spatially homogeneous Boltzmann equation for inelastic
hard spheres. We study the velocity distribution, f(v, y) in the so-called
homogeneous cooling state (HCS). Here y is the ‘‘external’’ laboratory
time, and the relation to time t used in Section 1 will be given in due time.
Moreover we restrict ourselves to isotropic distributions f(v, y) with v=|v|
with isotropic initial conditions, f(v, 0). The most basic and most
frequently used model for dissipative systems with short range hard core
repulsion is the Enskog–Boltzmann equation for inelastic hard spheres in
d-dimensions, (2)

“yf1=I(f) — 2 F
n
F dv2 h(v12 ·n) |v12 ·n| 5

1
a2
fgg
1 f

gg
2 −f1f26 , (2.1)

where fgg
1 is short for f(vgg

1 , y), and we have absorbed constant factors in
the time scale. Velocities and time have been dimensionalized in terms of
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the width and the mean free time of the initial distribution, and |v12 ·n| is
essentially the dimensionless collision rate. Moreover, >n ( · · · )=(1/Wd)×
> dn( · · · ) is an angular average over a d-dimensional unit sphere, restricted
to the hemisphere, v12 ·n > 0, through the unit step function h(x), and
Wd=2pd/2/C(

1
2 d).

The velocities vgg
i with i, j={1, 2} denote the restituting velocities,

and vg
i the corresponding direct postcollision velocities. They are defined

as,

vgg
i =vi−

1
2
11+1

a
2 vij ·nn

vg
i=vi−

1
2
(1+a) vij ·nn.

(2.2)

Here a is the coefficient of restitution (0 < a < 1), the relative velocity is
vij=vi− vj, and n is a unit vector along the line of centers of the interacting
particles. In one dimension the angular average >n, as well as the dyadic
product nn can be replaced by the number 1. One of the factors (1/a) in
Eq. (2.1) originates from the Jacobian, dvgg

1 dvgg
2 =(1/a) dv1 dv2, and the

other one from the collision rate of the restituting collisions, |vgg
12 ·n|=

(1/a) |v12 ·n|. Furthermore, in the HCS symmetrization over n and −n
allows us to replace 2h(x) in (2.1) by 1.

In subsequent sections we will also need the rate equations for the
average OkPy=> dv k(v) f(v, y), as follows from the Boltzmann equation,

dOkPy/dy=F dv k(v) I(f)=F
n
F dv1 dv2 |v12 ·n| f1f2[k(v

g
1 )−k(v1)].

(2.3)

The Boltzmann collision operator conserves the number of particles
(k(v)=1) and momentum (k(v)=v), but not the energy (k(v)=v2). Here
normalizations are chosen such that,

O1Py=F dv f(v, y)=1

OvPy=F dv vf(v, y)=0

Ov2Py=F dv v2f(v, y)=1
2 dv

2
o(y).

(2.4)
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As a consequence of the inelasticity an amount of energy, 14 (1−a
2)[v12 ·n]2,

is lost in every inelastic collision. Consequently the average kinetic energy
or granular temperature Ov2P keeps decreasing at a rate proportional to
the inelasticity (1−a2). So, the solution of the Boltzmann equation does
not reach thermal equilibrium, described by the Maxwellian jo(v)=
p−d/2 exp[−v2], but is approaching a Dirac delta function d (d)(v) for large
times. As the convergence of f(v, y) to its limiting value as yQ. is in
general non-uniform, the rescaled distribution may approach a different
limit (see (1.2)). Also, the detailed balance condition is violated, and the
Boltzmann equation does not obey an H-theorem. The moment equations
and the behavior of the scaling solutions for freely evolving and driven IHS
fluids have been extensively discussed both in the bulk of the thermal dis-
tribution, as well as in the high energy tails. (4, 7)

2.2. Inelastic Maxwell Models

One of the difficulties in solving the nonlinear Boltzmann equation
(2.1) for hard spheres is that the collision rate |v12 ·n| is not a constant, but
is proportional to the relative velocity v12 of the colliding pair, which is
typically of order v12 ’ vo(y), as defined in (2.4). Maxwell models on the
other hand are defined to have a collision rate independent of the relative
energy of the colliding particles.

In the recent literature two different types of mathematical simplifica-
tions have been introduced which convert the IHS-Boltzmann equation
into one for an inelastic Maxwell model with an energy independent colli-
sion rate. In the most drastic simplification, the IMM-A discussed in refs.
23, 24, and 30, one replaces the collision rate |v12 ·n| for the direct colli-
sions, as well as the one for the restituting collisions, |vgg

12 ·n|=|v12 ·n|/a by
its typical mean value vo(y). In a more refined approximation Bobylev
et al. (13) replace these collision rates by vo(y) |v̂12 ·n|. We call this model
IMM-B. Both approximations keep the qualitatively correct dependence of
the total energy v2o(y) on the ‘‘external’’ time y. In fact, strictly speaking
these models should be called pseudo-Maxwell molecules, because there
do not exist microscopic particles with dissipative interparticle forces,
for which the mathematical model Boltzmann equations below can be
derived.

By making the above mathematical simplifications we obtain from
(2.1) a collision term which is multiplied by a factor vo(y). This factor is
then absorbed by introducing a new time variable t. For model IMM-A the
resulting time transformation and Boltzmann equation in dimensionless
variables are then given by,
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dt=vo(y) dy

“tf1=I(f)=F
n
F dv2 5

1
a
fgg
1 f

gg
2 −f1f26

=−f1+F
n
F dv2

1
a
fgg
1 f

gg
2 . (2.5)

For the IMM-B we introduce a slightly different time variable t, and obtain
the Boltzmann equation in dimensionless variables,

dt=b1vo(y) dy

“tf1=I(f)=F
−

n
F dv2 |v̂12 ·n| 5

1
a
fgg
1 f

gg
2 −f1f26

=−f1+F
−

n
F dv2 |v̂12 ·n|

1
a
fgg
1 f

gg
2 , (2.6)

where > −n =(1/b1) >n |v̂12 ·n| with b1 defined in (A.1). The prefactors in the
time transformations are chosen such that the loss term takes the simple
form −f1. This implies that the new time variable t(y) counts the average
number of collisions suffered by a particle within the ‘‘external’’ time y.
Hence t is the collision counter or ‘‘internal’’ time of a particle.

One of the important properties of Maxwell models is that the
moment equations form a set of coupled equations, that can be solved
sequentially. For the one-dimensional Maxwell model these equations were
derived in ref. 12, and for the three-dimensional model IMM-B with
uniform impact parameter this was done in ref. 13. The general moment
equations for the present Maxwell models will be derived after having
obtained the characteristic function in Section 3. At this point we make an
exception for the second moment, which determines the typical velocity
vo(t) through the relation Ov2Pt=

1
2 dv

2
o(t), needed to study the rescaled dis-

tribution function. It follows from the kinetic equations (2.5) and (2.6) as

“tOv2Pt=−cOv2Pt

c=˛
1−a2

2d
=
2p(1−p)
d

(IMM-A)

1−a2

d+1
=
4p(1−p)
d+1

(IMM-B),
(2.7)
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where p=1
2 (1+a). Consequently vo(t)=vo(0) exp[− 12 ct]. Moreover, by

solving the differential equations for t in (2.5) and (2.6) we obtain the rela-
tions between the internal time t and the external time y, i.e.

exp[12 ct]=˛
1+12 cvo(0) y (IMM-A)

1+12 b1cvo(0) y (IMM-B),
(2.8)

as well as the decay of the energy in terms of internal time t and external
time y, i.e.,

v2o(t)=exp[− ct] v2o(0)=˛
v2o(0)/[1+

1
2 cvo(0) y]

2 (IMM-A)

v2o(0)/[1+
1
2 b1cvo(0) y]

2 (IMM-B).
(2.9)

This shows that Haff ’s law, (28) given by the second equality, is also valid
for inelastic Maxwell models.

To further elucidate the difference between the two classes of models
we change the integration variables n—which specifies the point of inci-
dence on a d-dimensional action sphere of two colliding particles—to the
impact parameter, b=|v̂12×n|=sin h, where h=cos−1(v̂12 ·n) is the angle
of incidence. The relevant structure of the integrals for IMM-A and
IMM-B is respectively,

F
n
’ F

p/2

0
dh(sin h)d−2 ’ F

1

0
db bd−2/`1−b2

F
−

n
|v̂12 ·n| ’ F

p/2

0
dh(sin h)d−2 cos h ’ F

1

0
db bd−2.

(2.10)

Therefore model A has a uniform distribution P(h)=1 over angles of
incidence, and a non-uniform distribution P(b)=1/`1−b2 over impact
parameters, which is biased towards grazing collisions, where b=1. Model
B has a uniform distribution P(b)=1 over impact parameters, and a non-
uniform distribution, P(h)=cos h, biased towards zero angle of incidence.
In this context it is important to note that the arguments on the validity of
the Boltzmann equation are based on the assumption of molecular chaos,
i.e., absence of precollision correlations between the velocities of a colliding
pair. This implies that the distribution function of impact parameters be
uniform. Hence, model IMM-A does not obey molecular chaos.

The question of interest in then: do IMM-A and IMM-B yield quali-
tatively the same results for the scaling distribution? The question is rele-
vant because Molecular Dynamics simulations (MD) of a system of N IHS
have shown that the dissipative dynamics (2.2) drives an initially uniform

Scaling Solutions of Inelastic Boltzmann Equations 415



distribution P(b)=1 in the HCS towards a non-uniform distribution P(b),
biased towards grazing collisions, which violates molecular chaos. So the
IMM-A model with a built-in initial bias may lead to spurious effects, such
as power law tails in f(v, t), which are artifacts of a too drastic simplification.

2.3. Similarity Solutions

The questions addressed in this section are: do the Boltzmann equa-
tions for the Maxwell models, constructed in the previous section, admit
similarity solutions, and what are the properties of such solutions? We
define a similarity solution f̃(c) through the relation,

f(v, t)=v−do (t) f̃(v/vo(t)). (2.11)

The normalizations imposed by (2.4) on these solutions are,

F dc f̃(c)=1 F dc c2f̃(c)=1
2 d. (2.12)

By inserting (2.11) in (2.1), and using vo(t) ’ exp[− 12 ct] we obtain the
following integral equation for f̃(c), i.e.

1
2
c
“

“c
· cf̃(c)=Ĩ(f̃). (2.13)

Here the operator Ĩ(f̃) has the same functional form as I(f) in (2.5) or
(2.6) with {vi, f} replaced by {ci, f̃}.

One of the goals of this paper is also to analyze in Section 4 in what
sense the rescaled distribution function, f̃(c, t), approaches its limiting
form as tQ.. To do so, we also need the kinetic equation for the rescaled
f̃(c, t), which reads,

“tf̃+
1
2
c
“

“c
· cf̃=Ĩ(f̃). (2.14)

Some comments are in order here. Physical solutions f̃(c) of (2.13) must be
non-negative. A velocity distribution f(v, t), evolving under the nonlinear
Boltzmann equation, preserves positivity for a positive initial distribution
f(v, 0). (33, 34) However, for scaling solutions, being the solution of (2.13),
positivity is not guaranteed. (13, 20) If one would know a positive scaling
solution f̃(c)—as is the case in one dimension (21)—and prepare the system
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in this initial state, then the entropy S or the H-function in state (2.11),
also shows singular behavior, i.e.,

S(t)=−H(t)=−F dc f̃(c) ln f̃(c)− 12 dc t+const

4 − 12 dc t+const (t large), (2.15)

where c is positive and > f̃ ln f̃ is some constant. In these solutions the
entropy keeps decreasing at a constant rate 12 dc. This is typical for pattern
forming mechanisms in configuration space, where spatial order or corre-
lations are building up, as well as in dynamical systems and chaos theory,
where the rate of irreversible entropy production is negative on an attrac-
tor. (35–37) In fact the forward dissipative dynamics, (v1, v2)Q (v

g
1 , v

g
2 ),

defined in (2.2), has a Jacobian J=a < 1, i.e., dvg
1 dvg

2=a dv1 dv2, corre-
sponding to a contracting flow in v-space. Moreover, there is no funda-
mental objection against decreasing entropies in an open subsystem, here
the inelastic Maxwell particles, interacting with a reservoir. The reservoir is
here the sink, formed by the dissipative collisions, causing the probability
to contract onto an attractor.

3. POWER LAW TAILS

3.1. Fourier Transformed Boltzmann Equation

The goal of this section is to show that the Boltzmann equation for
IMM’s has a scaling solution with a power law tail. This is done by intro-
ducing the Fourier transform of the distribution function, j(k, t)=
Oexp[−ik · v]Pt, which is the characteristic function or generating function
of the velocity moments. Because f(v, t) is isotropic, j(k, t) is isotropic as
well. It is also convenient to consider f(x, t), defined through the relation
j(k, t)=f(14 k

2, t).
We start with the simplest case, and apply Bobylev’s Fourier trans-

form method (13, 18) to the Boltzmann equation (2.5) for model IMM-A with
the result,

“tj(k, t)=F
n
[j(k+, t) j(k− , t)−j(0, t) j(k, t)]

“tf(x, t)=F
n
[f(xe+(n), t) f(xe−(n), t)−f(0, t) f(x, t)],

(3.1)
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where j(0, t)=1=f(0, t). Here we have used (2.3) with k(v1)=
exp[−ik · vg

1] and expressed the exponent as k · vg
1=k− · v1+k+ · v2 (see

(2.2)), where

k+ — kk̃+=pk ·nn k̃2+=p
2(k̂ ·n)2=e+(n)

k− — kk̃−=k−k+ k̃2−=[1−z(k̂ ·n)
2]=e−(n),

(3.2)

with p=1
2 (1+a) and z=2p−p2. In one dimension this equation simplifies

to

“tj(k, t)=j(pk, t) j((1−p) k, t)−j(k, t), (3.3)

where k+=pk and k−=(1−p) k. Equation (3.1) has the interesting prop-
erty that for a given solution j(k, t) one has a whole class of solutions
j̄(k, t)=exp[ik ·w] j(k, t) where w is an arbitrary velocity vector. (13, 18)

This property reflects the Galilean invariance of the Boltzmann equation.
Because f(v, t) is isotropic, only its even moments are non-vanishing,

and the moment expansion of the characteristic function then takes the
form,

j(k, t)= C
m=even

(−ik)m

m!
O(k̂ · v)mPt=C

n

(−x)n

n!
mn(t)=f(x, t), (3.4)

where x=k2/4. The angular time independent average O(k̂ · v̂)2nP=b2n is
calculated in (A.1) and the moment mn(t) is defined as

mn(t)=4nn! b2nOv2nPt/(2n)!=Ov2nPt/(d/2)n

b2n=O(k̂ · v̂)2nP=(1/2)n/(d/2)n.
(3.5)

The Pochhammer symbol (a)n is defined in (A.3) and we have used the
duplication formula for the Gamma function (2n)!=C(2n+1). Further-
more we note that the moments of a Gaussian jo(v)=p−d/2 exp(−v2) are
Ov2nPo=(d/2)n.

Scaling solutions in Fourier representation have the form f(x, t)=
F(eo(t) x), where F(14 k

2) is the Fourier transform of f̃(c) and eo(t)=
v2o(t)=e

−cteo(0). Substitution in Eq. (3.1) yields the integral equation for
the scaling form,

− cxFŒ(x)+F(x)=F
n
F(xe+) F(xe−). (3.6)
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Its moments follow from the expansion,

F(x)=C
n
(−x)n mn/n!=1−x+x2m2/2!+· · ·

mn=F dc c2nf̃(c)/(d/2)n — Oc2nP/(d/2)n,

(3.7)

where (2.12) imposes m1=1.

3.2. Small-k Singularity of Characteristic Function

In case all coefficients in the Taylor expansion (3.7) exist, then F(x) is
regular at the origin, and the corresponding scaling form f̃(c) falls off
exponentially fast at large c, and all its moments Oc2nP are finite. Suppose
now that the small-k or small-x behavior of F(x) contains a singular term xa,
where a does not take integer values (note that even powers k2a=k2n

represent contributions that are regular at small k), then its inverse Fourier
transform scales as 1/c2a+d at large c. For this distribution the moments
with n \ a are divergent, and so is the n-th derivative of the generating
function F(x) at x=0. The requirement that the total energy be finite
imposes the lower bound a > 1 on the exponent because of the normaliza-
tion (2.12).

Model IMM-A

To test whether the Fourier transformed Boltzmann equation (3.1)
admits a scaling solution with a dominant small-x singularity xa, we make
for the small −x ansatz,

F(x)=1−x−Axa, (3.8)

insert this expression in (3.6), and investigate whether the resulting equa-
tion admits a solution for the exponent a. This is done by equating the
coefficients of equal powers of x s on both sides of the equation, which
yields for general dimensionality,

c=l1 — F
n
[1−e+(n)−e−(n)]=2p(1−p)/d

ac=la — F
n
[1−ea+(n)−e

a
−(n)].

(3.9)
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Fig. 1. Eigenvalue ls is a concave function of s, plotted for different values of a for the 2-D
inelastic Maxwell model IMM-A. The line y=sl1 is plotted for a=0.6, 0.8 and a=1 (top to
bottom). The intersections with ls determine the points s0 (filled circles) and s1 (open circles).
Here s1=a determines the exponent of the power law tail. For the elastic case (a=1, l1=0,
energy conservation) there is only 1 intersection point. The branch of ls in the interval
s0 < s < s1 is referred to as stable and the branches s < s0 and s > s1 as unstable.

The eigenvalue ls(s=1, a) has been calculated in (A.4) and (A.8) of the
Appendix. The relevant properties are: (i) l0=0 because of particle con-
servation; (ii) limsQ 0 ls=−1; (iii) ls is a concave function, monotonically
increasing with s, and (iv) all eigenvalues for non-negative integers n are
positive (see Fig. 1). In one dimension the above eigenvalue becomes
la=1−p2a−(1−p)2a.

To continue we combine both relations in (3.9), which determine the
exponent a as the root of the transcendental equation,

ls=sl1. (3.10)

This equation has been solved numerically, and the results are plotted in
Fig. 2. We note here that Krapivsky and Ben-Naim (23) have derived the
same transcendental equation.

As can be seen from the graphical solution in Fig. 1, the transcendental
equation (3.10) has two solutions, the trivial one (s0=1) and the solution
s1=a with a > 1. The numerical solutions for d=2, 3 are shown in Fig. 2a
as a function of a, and the a-dependence of the root a(a) can be understood
from the graphical solution in Fig. 1. In the elastic limit as a ‘ 1 the eigen-
value l1(a)Q 0 because of energy conservation. In that limit the transcen-
dental equation (3.10), ls(1)−sl1(1)=0, no longer has a solution with
a > 1, and a(a)Q., as it should be. This is consistent with a Maxwellian
tail distribution in the elastic case. Needless to say that the transcendental
equation for the one-dimensional IMM-A has the solutions s0=1 (trivial)
and s1=a=3/2, describing a power law tail f̃(c) ’ 1/|c|2a+d=|c|4, in full
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Fig. 2. Exponent a(a), which is the root of (3.10), as a function of the coefficient of restitu-
tion a, which determines the high energy tail 1/c2a+d of the scaling solution f̃(c). Left panel
for IMM-A with uniform angle of incidence in 2-and 3-D, and right panel for IMM-B with
uniform impact parameter in 3-D.

agreement with the exact scaling solution f̃(c)=(2/p)(1+c2)−2, found by
Baldassarri et al. (21) for this case. The one-dimensional case is a bit patho-
logical because the intersection points (s0, s1)=(1, 3/2) of y=ls(a) and
y=sl1(a) are independent of p=1

2 (1+a), implying that these points are
common to all l-curves at different parameter values a. In summary, we
conclude that there exists for inelastic Maxwell models a scaling solution
f̃(c) with a power law tail 1/|c|2a+d at large energies.

As a parenthesis we apply the previous analysis for similarity solutions
to the elastic case (a=1), where the BKW-mode, discussed in the intro-
duction, is an exact similarity solution. In the elastic case similarity solu-
tions of (3.1) would also have the form f(x, t)=F(eo(t) x), but the time
dependent factor eo(t) is not determined by the conserved second moment
Ov2P=1

2 d. So the typical time scale c, entering through eo(t)=exp(−ct),
will be determined by the lowest moment with t-dependence, i.e.,
Ov4P ’ e2o(t), and its rate equation imposes l2=2c. The transcendental
equation becomes then cs=ls−sl2/2, which has again two solutions,
s0=2 and s1=3 because l2/2=l3/3. As both a-values are integers, the
small−x behavior of the characteristic function contains only regular terms
x2 and x3, which do not result in any power law tails. In fact, the solutions
{s=2, 3} correspond to the exact closed form solution f(x)=e−x(1+x),
the well-known Bobylev–Krook–Wu mode for elastic Maxwell mole-
cules. (18, 20)

Model IMM-B

The second part of this section deals with the Boltzmann equation
(2.6) for model IMM-B with uniform impact parameters, as introduced by
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Bobylev et al., (13) and we show that the above method gives similarity solu-
tions with power law tails for this model as well. We restrict the analysis to
the three-dimensional case. The integral equation for the characteristic
function in this case has been derived in ref. 13, and reads,

“tf(k, t)=F
−

n
|k̂ ·n| f(k+, t) f(k− , t)−f(k, t). (3.11)

In a similar way as in the previous section, we derive the integral equation
for the corresponding scaling solution, f(x, t)=F(xeo(t)) with the result,

− cxFŒ(x)+F(x)=F
−

n
|k̂ ·n| F(xe+) F(xe−), (3.12)

and the procedure described in (3.8) and (3.9) leads to the same transcen-
dental equation (3.10) with eigenvalue,

la=F
−

n
|k̂ ·n| [1−ea+−e

a
−]

=2 F
1

0
dx x{1−p2ax2a−[1−zx2]a}

=1−
p2a

a+1
−
1
a+1
31−(1−p)2a+2
1−(1−p)2

4 . (3.13)

The equality on the second line has been obtained by changing to the new
integration variable x=cos h, and the value for la is in agreement with the
corresponding eigenvalue obtained in ref. 13 for integer a. For a=1 one
obtains here l1=p(1−p), in agreement with (2.7) for d=3. The numerical
solution of the transcendental equation (3.10) is shown in Fig. 2b.

It turns out that the numerical values a(a) for the exponents of
IMM-B with a uniform distribution of impact parameters looks qualitati-
vely the same as those for model IMM-A with a uniform distribution of
angles of incidence. The differences in distribution of impact parameters of
both models, uniform in IMM-B versus biased towards grazing in IMM-A,
has no qualitative effect on the nature of the singularity, i.e., on the values
or a-dependence of the tail exponents. Therefore, the power law tail in
f̃(c) ’ 1/c2a+d is not a spurious effect induced by models with impact
parameters b biased towards grazing collisions.

After completion of this article Bobylev and Cercignani (38) have kindly
informed us that Eqs. (3.11) and (3.12) are also correct for the d-dimen-
sional version of model IMM-B. This implies not only that the exponent a

422 Ernst and Brito



can be calculated for general dimensionality, but it also implies that the
next section, after some trivial modifications, applies to the model IMM-B
in d dimensions as well.

We conclude this section by discussing some numerical evidence for the
conjecture on the approach to a scaling solution with algebraic high energy
tails, as formulated in Section 1. Baldassarri (22) has obtained large-t solu-
tions f(v, t) by applying the DSMC (Direct Simulation Monte Carlo)
method to the Boltzmann equations for three types of inelastic Maxwell
models, among which the two-dimensional IMM-A model and the three-
dimensional IMM-B model, analyzed in this article. For the totally inelas-
tic case (a=0) he has observed that f(v, t), for general initial data, evolves
after sufficiently long time to a scaling solution of the form (1.1), on which
the simulation data can be collapsed. Moreover it has a power law tail,
f̃(c) ’ 1/c2a+d in agreement with the predictions in Figs. 2a,b at a=0.

4. APPROACH TO SCALING SOLUTIONS

4.1. Moment Equations

The moment equations for Maxwell models are special because they
form a closed set of equations that can be solved sequentially as an initial
value problem. In this section we study the effects of power law tails
f̃(c) ’ A/c2a+d on the moments, and investigate in what sense, if any, the
calculated time dependence of the moments as tQ. is related to the sin-
gular behavior (3.8) of the scaling form F(x), derived in Section 3. The
latter implies that the moments mn, generated by F(x), with n > a are
divergent and that those with n < a remain finite.

First consider the standard moments mn(t). Inserting the expansion
(3.4) in (3.1) and equating the coefficients of equal powers of x yields for
the moments mn(t)=Ov2nPt/(d/2)n the following equations of motion,

ṁn+lnmn=C
n−1

l=1
H(l, n−l) mlmn−l, (4.1)

where the coefficients H(l, m) and eigenvalues ln for model IMM-A
are defined and calculated in (A.4)–(A.8). Those for model IMM-B follow
after some trivial replacement, indicated in Appendix A. Regarding the
moments, we have m0=1 because of (2.4), and m1(t)=exp(−l1t) m1(0),
where l1=c, as given in (2.7). Moreover as tQ., all moments with n > 0
vanish, which is consistent with the limiting behavior f(v, t)Q d (d)(v) for
tQ..
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Next we consider the moments mn generated by the scaling form F(x).
Using a self-consistent argument we have demonstrated in Section 3 that
the kinetic equation (2.5) admits a scaling solution F(x) with a dominant
small-x singularity xa, with a > 1 and non-integer. This implies that all nth
order derivatives of F(x) at x=0, or equivalently all moments mn, are finite
if n [ no=[a] < a, and all those with n > a are divergent. Here [a] is the
largest integer less than a. Hence, the small-x behavior of F(x) can be
represented as ,

F(x)=C
no

n=0
(−x)n

mn

n!
+o(xa), (4.2)

where the remainder is of order o(xa) as xQ 0. In this scaling form we only
know the exponent a and the moments m0=m1=1. Now we calculate the
unknown finite moments of the scaling form, mn with 1 < n < a. This is
done by inserting (4.2) into the kinetic equation (3.1), yielding the recursion
relation,

mn=(1/cn) C
n−1

l=1
H(l, n−l) mlmn−l

cn=ln−nc=ln−nl1.

(4.3)

Here c1 — c−l1=0 on account of (2.7) and the initialization is m1=1. The
solutions mn for n=2, 3, 4, 5 in model IMM-A are shown in Fig. 3 as a
function of the coefficient of restitution a. Furthermore we observe that the
root s=a of the transcendental equation (3.10), cs=ls−sl1=0, indicates
that cs changes sign at s1=a (see open circles in Fig. 1), and that according
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Fig. 3. The moments mn ’ Oc2nP of the scaling form f̃(c) for n=2, 3, 4, 5 as a function of a.
The moment m2 exists for all values of a, while higher moments only exist for a above a
threshold value, indicated by the vertical asymptotes.
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to Section 3 all moments mn with n > s1=a (n on unstable branch) are
divergent.

The recursion relation (4.3) for the moments mn in the one-dimensional
case is again a bit pathological in the sense that the stable branch
(s0=1< s < s1=3/2) contains only one single integer label, i.e., s=1. So
only m0=m1=1 are finite, and all other moments are infinite, in agreement
with the exact solution of Baldassarri et al.

The recursion relation (4.3) for both models has a second set of solu-
tions {mn}, which has been studied by Bobylev et al., (13) who showed that
within this set there are moments mn being negative. The argument is
simple. Consider mn in (4.3) with n=no+1. Then the prefactor 1/cno+1 on
the right hand side of this equation is negative because the label no+1 > a
is on the unstable branch of the eigenvalue spectrum in Fig. 1, while all
other factors are positive. This implies that the corresponding scaling form
f̃(c) has negative parts, and is therefore physically not acceptable. We also
note that the moments mn of the physical and the unphysical scaling solu-
tion F(x) coincide as long as both are finite and positive in the a-interval
that includes a=1.

4.2. Long Time Behavior of Rescaled Moments

In the introduction we have already indicated that the distribution
function f(v, t) itself approaches a Dirac delta function, d(d)(v), and that the
rescaled distribution function f̃(c, t)=vdo(t) f(vo(t) c, t), as defined in (1.1),
supposedly approaches a scaling form. To demonstrate how this happens,
we define the rescaled function f̃(x, t) through the relation f(x, t)=
f̃(eo(t) x, t) with eo(t)=exp[−ct] eo(0). We also consider the more general
case where the typical time scale is not a priori fixed by defining eo(t) in
terms of one specific moment Ov2nP. Then it follows from (3.1) that

“tf̃(x, t)− cx “xf̃(x, t)+f̃(x, t)=F
n
f̃(xe+, t) f̃(xe− , t), (4.4)

where f̃(x, t) with x=1
4 k
2 is the Fourier transform of f̃(c, t) in (1.1). The

stationary solution of this equation determines a possible similarity solu-
tion for a given c. The equations of motion for the rescaled moments mn(t)
of f̃(c, t) are obtained by substituting the Taylor expansion f̃(x, t)=
;n (−x)n mn(t)/n!, into (4.4), which yields for n=1, 2,...

ṁn+cnmn=C
n−1

l=1
H(l, n−l) mlmn−l

cn=ln−nc,

(4.5)
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with mn(0)=mn(0)/e
n
o(0). We also observe that the equations for f̃(x, t)

and for the moments mn(t) hold for arbitrary rescaled initial distributions,
f̃(c, 0)=vdo(0) f(cvo(0), 0).

To study the long time approach of f̃(c, t) to the scaling solution f̃(c)
in (1.1), we analyze the approach of the rescaled moments mn(t)=
mn(t)/e

n
o(t) to the moments mn of the scaling solution f̃(c). To do so we

have to choose c=l1 (see Fig. 4) on account of (2.4) and (2.7). The infinite
set of moment equations (4.5) for mn(t) can be solved sequentially for all n
as an initial value problem. To explain what is happening, it is instructive
to use a graphical method to determine the zeros of the eigenvalue
cs=ls−sc for different values of c. This is illustrated in Fig. 4 by deter-
mining the intersections {s0, s1} of the curve y=ls and the line y=sc,
where s0 and s1 are denoted respectively by filled (N) and open circles (n).
These circles divide the spectrum into a (linearly) stable branch (s0 < s < s1)
and two unstable branches (s < s0) and (s > s1). The moments ms(t) with
s=n > a are on an unstable branch (cs < 0) and will grow for large t at an
exponential rate, mn(t) 4 mn(0) exp[|cn |t], as can be shown by complete
induction from (4.5) starting at n=[a]+1. They remain positive and finite
for finite time t, but approach+. as tQ., in agreement with the predic-
tions of the self consistent method of Section 3. The moments with n on the
stable branch are linearly stable (cn > 0), but may still grow through non-
linear couplings with lower moments ml(t) whenever l=1, 2,... is on the
unstable branch (l < s0). This is relevant for the discussion in the next sub-
section. In the case c=l1 under consideration however, all moments ml
with l=1, 2,..., [a] are globally stable and approach for tQ. the limiting
value mn(.)=mn, which are the finite positive moments of the scaling form
(4.2), plotted in Fig. 3.
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Fig. 4. Graphical construction of the solutions of ls=sc for different values of c at dissipa-
tion a=0.5. Intersections (s0) with smaller s-values are marked with filled circles, and inter-
sections (s1) with larger s-values with open ones.
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The behavior of the moments described above is considered as a weak
form of convergence or approach of f̃(c, t) to f̃(c) for tQ.. This result
will be described in a more precise form and summarized in the last section.
The physically most relevant distribution functions f(v, t) and rescaled
distribution functions f̃(c, t) are those with regular initial conditions, i.e.,
all moments mn(0)=e

n
o(0) mn(0) <.. This implies that the initial condition

for the rescaled Fourier transform f̃(x, 0) with x=1
4 k
2 of f̃(c, 0) has a

series expansion regular at the origin x=0, i.e., all its derivatives exist in
that point.

4.3. More Similarity Solutions

The results of the previous subsection can also be generalized to dif-
ferent values of c and different classes of initial distributions, which possess
only a finite set of bounded moments mn(0). Here we summarize only the
most important results of these generalizations, the details of which will be
published elsewhere. (39)

The case, c > l1, concerns the line y=sc2 in Fig. 4. Then m1(t) will
always be in the unstable region (there is either an intersection point s0 > 1,
or there are no intersection points at all). So, m1(t)Q. as tQ. at an
exponential rate, and it drives all moments mn(t)Q. through nonlinear
couplings to m1(t), which is present on the right hand side of (4.5). Conse-
quently, there is no approach to the scaling form F(x) with a rate constant
c > l1.

The case, 0 < c < l1, concerns the line y=sc4 where there are two
intersection points {s0, s1} with s0=a< 1 and s1=b> 1, corresponding to
the dominant singularity xa and a subleading singularity xb. The dominant
singularity corresponds to a power law tail f̃(c) ’ 1/c2a+d with a < 1.
Because a < 1, the system has infinite energy at all times. All higher
moments mn with n=2, 3,... are divergent as well at all times. Conse-
quently, the initial states under discussion are already singular with
f(x, 0) 4 1−Axa. Of course such states are of much less interest for pos-
sible physical applications than the regular ones, discussed in the previous
subsection. The feature of interest here is to demonstrate that inelastic
Boltzmann equations generate for initial states characterized by a singular-
ity xa with a < 1 a new type of singularity xb, which is found through the
graphical construction using line y=sc4. For elastic Maxwell molecules
such states have been analyzed recently by Bobylev and Cercignani. (31) In
one-dimensional systems these initial states are closely related to Levy dis-
tribution (40) with the characteristic function j(k)=exp[−bk2a], where b is
positive. For such distributions it is well known that Fourier inversion
yields for 0 < a < 1 a non-negative distribution f(v) with a power law tail
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1/v2a+d with d=1. On the other hand, for a > 1 Fourier inversion may
lead to a distribution with negative f(v).

However, in this case one can say more. Following Bobylev and
Cercignani, we assume that we can construct a non negative initial distri-
bution with a f(x, 0) which is a regular function of z=xa in a neigh-
borhood of z=0, i.e.,

f(x, 0)=C
.

n=0
(−1)n

xna

n!
An(0), (4.6)

where |An(0)| < An, and we have chosen normalization such that A0(0)=
A1(0)=1. We have slightly modified the example of ref. 31 to have a finite
non-vanishing radius of convergence of (4.6). Then we can demonstrate
that the rescaled characteristic function f̃(y, t) — f(x, t) approaches in the
scaling limit (tQ. with y — x exp[− ct] fixed) a positive scaling form or
similarity solution F(y) with c=la/a, and

F(y)=C
[b]

n=0
(−1)n

xna

n!
An(.)+o(yb), (4.7)

where A0(.)=A1(.)=1. The approach is again in the weak sense of a
finite set of moments. The An(.) are positive and can be calculated from a
set of recursion relations, rather similar to (4.3). Moreover, b=s1 is the left
most intersection point of ls with the line y=sc5 (see the left most open
circle on ls). So, the initial f(x, 0), which is regular in z=xa around z=0,
develops a new singularity of the type xb. This can again be demonstrated
by considering the rescaled function f̃(y, t), defined as f(x, t)=f̃(e−cty, t),
and expanding f̃(y, t) in a series like (4.6) with An(0) replaced by An(t).
The coefficients satisfy moment equations, rather similar to (4.5).

In the case, c [ 0, the results are similar to those in the previous para-
graph, except that there is only one intersection point at s0=a (see the line
y=sc5=−|c5 | s). The energy and all higher moments are infinite, and the
scaling form of the characteristic function F(x) is a regular function of
z=xa near the origin. A similar solution for the elastic case has been
obtained in ref. 31.

5. CONCLUSIONS

Using self consistency arguments we have shown that the nonlinear
Boltzmann equation for the inelastic Maxwell models IMM-A and IMM-B
admits a scaling solution f̃(c) with a power law tail 1/c2a+d where the
exponent a is given by the root a with a > 1 of a transcendental equation.
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This implies that all moments mn of f̃(c) are divergent for n > a, and those
mn with n < a are positive and finite, and are given recursively through (4.3)
with initialization m1=1.

For systems with dissipative dynamics we have formulated a conjec-
ture about the long time approach, for general classes of initial distribu-
tions, of the rescaled distribution function f̃(c, t)=vdo(t) f(cvo(t), t) to a
scaling solution f̃(c) with an high energy tail, which is overpopulated when
compared to a Gaussian distribution. For the inelastic Maxwell models,
studied in detail in this article, we have demonstrated this approach to the
scaling solution f̃(c) in Section 4.2 in the following weak sense:

Given on the one hand the rescaled moments mn(t)=mn(t)/e
n
o(t) of

the physically most relevant class of regular initial distributions with all
moments mn(0) bounded, and rescaled according to (1.1), and given on the
other hand the unique set of finite positive moments mn of the scaling form
with n < a, then all mn(t) with n < a approach for tQ. the limiting value
mn through a sequences of positive numbers, and all moments mn(t) with
n > a behave as mn(t) 4 mn(0) exp[|cn | t]Q+. as tQ.. This is in
agreement with all known properties of the scaling solution.

We consider the long time behavior of the set of moments mn(t)Q mn
(n < a) and mn(t)Q+. (n > a) as a demonstration that f̃(c, t)
approaches the scaling form f̃(c) for tQ.. We further note that these
results for the long time behavior of inelastic Maxwell models, after the
rescaling of the initial distribution, are universal, i.e., they are independent
of all details of the initial distributions. We consider the present results for
inelastic Maxwell models as strong support for our more general conjec-
ture, which is also confirmed for inelastic Maxwell models through the
Monte Carlo simulations of the Boltzmann equation by Baldassarri et al.,
in which the approach of f̃(c, t) to a positive power law tail with the pre-
dicted exponent a was confirmed within reasonably small error bars.

APPENDIX A: ANGULAR AVERAGES IN D-DIMENSIONS

The angular average (3.5) of powers of â ·n=cos h can be simply cal-
culated by using polar coordinates with â as the polar axis. Then,

bs=F
n
|â ·n| s=

>p0 dh(sin h)d−2 (cos h) s

>p0 dh(sin h)d−2
=
C(s+12 ) C(

d
2)

C(s+d2 ) C(
1
2)
. (A.1)

For s=2n this formula can be expressed as

b2n=(1/2)n/(d/2)n, (A.2)
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where the Pochhammer symbol is defined as

(a)n=C(a+n)/C(a)=a(a+1) · · · a(a+n−1). (A.3)

In fact, we will use the notations (a)s, b2s, s!=(1)s and (sr) also for non-
integer values of s by expressing these quantities in terms of Gamma
functions.

Next we define H(l, m) and ln, introduced in (4.1) for model IMM-A,

H(l, n−l)=Rn
l
S F

n
e l+(n) e

n−l
− (n)

ln=1+dn0−H(0, n)−H(n, 0)=F
n
[1+dn0−e

n
+(n)−e

n
−(n)],

(A.4)

where e± (n) has been defined in (3.2). For model IMM-B one needs to
replace >n with > −n |â ·n|. These expressions hold for d=1, 2,... . Evaluation
of H(l, m) requires,

I(m, n)=F
n
em+e

n
−=

2p2m

B(d−12 ,
1
2)

F
p/2

0
dh(sin h)d−2 (cos h)2m [1−z cos2 h]n,

(A.5)

where z=1−(1−p)2. Following Krapivsky and Ben-Naim (23) we change to
the new integration variable m=cos2 h, to find for d=1, 2,...

H(m, n)=Rn+m
m
S p2m

B(d−12 ,
1
2)

F
1

0
dm mm−1/2(1−m)

d−3
2 [1−zm]n

=Rn+m
m
S b2m p2m 2F1 1−n, m+12, m+

d
2
; z2

=p2m Rn+m
m
S C

n

l=0

Rn
l
S b2l+2m(−z) l. (A.6)

On the second and third line we have used the fundamental integral repre-
sentation for the hyper-geometric function 2F1, and its Gauss series, i.e.,

2F1(a, b, c; z)=˛B
−1(b, c−b) F

1

0
dt tb−1(1−t)c−b−1 (1−zt)−a

C
.

l=0

(a)l (b)l
(c)l l!

z l.
(A.7)
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When a=−n, (n=0, 1, 2,...), then 2F1(−n, b, c; z) is a polynomial of
degree n in z, and the Gauss series ends at l=n.

To calculate the eigenvalue ln in (A.4) we deduce from (A.7)

H(n, 0)=b2n p2n

H(0, n)=2F1 1−n,
1
2
,
d
2
; z2=C

n

l=0

Rn
l
S b2l(−z) l.

(A.8)
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